ЗАДАЧА №2

При скрещивании растений львиного зева с красными пилорическими (правильными) цветками с растениями, имеющими желтые зигоморфные (неправильные) цветки , в первом поколении все растения имели розовые зигоморфные цветки , а во втором наблюдалось расщепление:

- 39 🌽 с красными зигоморфными,
- 94 🎤 с розовыми зигоморфными,
- 45 🌽 с желтыми зигоморфными,
- 15 🏶 с красными пилорическими,
- 28 🛞 с розовыми пилорическими,
- 13 🇩 с желтыми пилорическими.

Как наследуются признаки? Определите генотипы исходных растений.

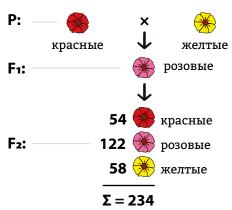
ПЛАН РЕШЕНИЯ

- 1. Записать общую схему скрещивания.
- 2. Выделить отдельные признаки, рассматриваемые в задаче.
- 3. Проанализировать тип наследования каждого из этих признаков по отдельности. Для каждого из признаков:
 - 1) записать схему скрещивания для анализируемого признака;
 - 2) предположить генотипы родительских особей;
 - 3) Предположить количество генов, задействованных в формировании данного признака;
 - 4) Предположить соотношение фенотипических классов, выдвинуть гипотезу о расщеплении (Но);
 - Проверить гипотезу с помощью метода χ² (хи-квадрат);

- 6) Сделать вывод о характере наследования;
- 7) Переписать схему скрещивания для данного признака в генотипах, обозначить гаметы. Нарисовать решетку Пеннета.
- 4. Проверить, являются ли эти гены сцепленными или нет (они находятся в одной хромосоме или в разных):
 - 1) предположить сцепленность или несцепленность генов, выдвинуть гипотезу о расщеплении по обоим признакам;
 - 2) проверить гипотезу с помощью метода χ^2 (хи-квадрат).
- 5. Переписать общую схему скрещивания в генотипах, обозначить гаметы. Нарисовать решетку Пеннета.

РЕШЕНИЕ

1. Запишем общую схему скрещивания, посчитаем количество особей.



2. Мы видим два признака: окраска цветков и их форма.

ВАЖНО: Нельзя анализировать тип наследования сразу нескольких признаков!

3. Рассмотрим наследование по окраске:

1) Запишем схему скрещивания по признаку окраски, без учета формы цветка. Посчитаем количество особей.

- 2) В **F**₁ наблюдается единообразие => родительские формы гомозиготны.
- 3) В **F**₂ наблюдаются 2 фенотипических класса => предположим моногенное отличие родительских форм.
- 4) Т.к. мы предположили моногенное отличие родительских форм, максимальное число вариантов сочетаний гамет 4.

Посчитаем количество особей, приходящихся на каждую такую комбинацию: **234:4** = **58.5**.

Посчитаем количество генотипических классов, приходящихся на каждый из фенотипических:

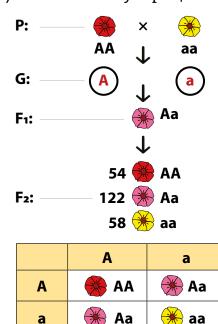
 $H_0 = 1:2:1$

5) Рассчитаем значение χ².

Фенот	ип	н	o	$\frac{(H-O)^2}{O}$	χ²
		54	58,500	0,346	
*		122	117,000	0,214	0,564
*		58	58,500	0,004	

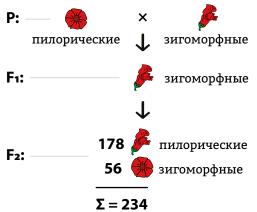
H – наблюдаемое количество особей **O** – ожидаемое количество особей

$$\chi^{2} = \frac{(H_{\text{kpac}} - O_{\text{kpac}})^{2}}{O_{\text{kpac}}} + \frac{(H_{\text{pos}} - O_{\text{pos}})^{2}}{O_{\text{pos}}} + \frac{(H_{\text{желт}} - O_{\text{желт}})^{2}}{O_{\text{желт}}}$$


Число степеней

свободы = 2

Число степеней свободы	1	2	3	4	5	6	7
Х ² кр	3,841	5,991	7,815	9,488	11,007	12,592	14,067


Так как $\chi^2 < \chi^2_{\kappa_0}$, то гипотеза H_0 не отвергается.

- 6) Расщепление **1:2:1** => данный признак наследуется по типу неполного доминирования.
- 7) Запишем схему скрещивания в генотипах, зарисуем решетку Пеннета:

- 3. Рассмотрим наследование по форме цветка:
 - 1) Запишем схему скрещивания по признаку формы цветка, без учета его окраски. Посчитаем количество особей.

- 2) В **F**₁ наблюдается единообразие => родительские формы гомозиготны.
- 3) В **F₂** наблюдаются 2 фенотипических класса => предположим моногенное отличие родительских форм.
- 4) Т.к. мы предположили моногенное отличие родительских форм, максимальное число вариантов сочетаний гамет 4.

Посчитаем количество особей, приходящихся на каждую такую комбинацию: **234**: **4** = **58**,**5**.

Посчитаем количество генотипических классов, приходящихся на каждый из фенотипических:

56:58,5 = 0,96 ≈ 1

 $H_0 = 3:1$

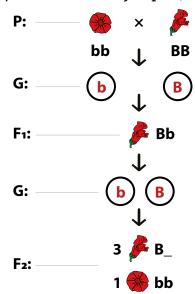
5) Рассчитаем значение **χ**².

Фенотип	н	o	$\frac{(H-O)^2}{O}$	χ²
	178	175,500	0,036	0.142
	56	85,000	0,107	0,143

H – наблюдаемое количество особей **O** – ожидаемое количество особей

Число степеней

свободы = 1


 $\chi_{yy}^2 = 3,8415$

v2 _	$(H_{3И\Gamma} - O_{3И\Gamma})^2 +$	$(H_{\Pi U J} - O_{\Pi U J})^2$
Х —	Озиг	Опил

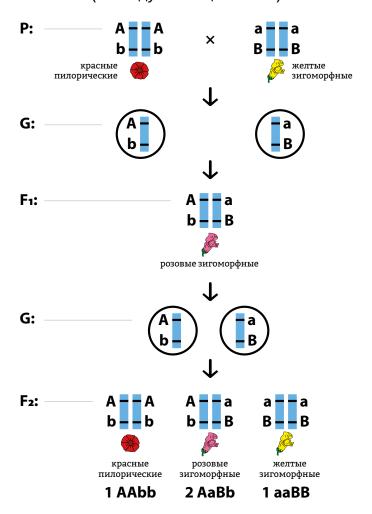
Число степеней свободы	1	2	3	4	5	6	7
Х ² кр	3,8415	5,991	7,815	9,488	11,007	12,592	14,067

Так как $\chi^2 < \chi^2_{\kappa p}$, то гипотеза H_0 не отвергается.

- 6) Расщепление **3 : 1** => данный признак наследуется по типу полного доминирования. Гетерозигота зигоморфная, и в **F**₂ преобладают зигоморфные цветки => доминантный аллель зигоморфный.
- 7) Запишем схему скрещивания в генотипах, зарисуем решетку Пеннета:

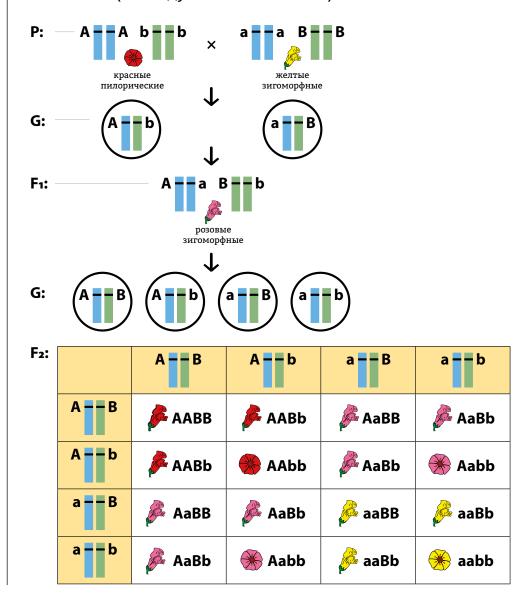
	В	b
В	₽ BB	Bb
b	🔑 Bb	₩ bb

Вывод №2

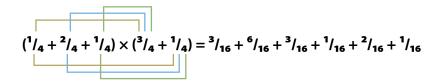

Форма наследуется по типу полного доминирования.

4. Проверим наличие сцепления.

1) Предположим, что гены, определяющие окраску и форму цветка находятся в одной хромосоме, то есть сцеплены.


Случай 1. Гены находятся в одной хромосоме (наследуются сцепленно).

Если гены находятся в одной хромосоме (при полном сцеплении) новых комбинаций признаков в **F**₂ не появляется.


Теперь предположим, что гены, определяющие окраску и форму цветка находятся в разных хромосомах.

Случай 2. Гены находятся в разных хромосомах (наследуются независимо).

Если гены находятся в разных хромосомах (не сцеплены), то будут возникать новые комбинации.

В нашем случае в **F2** возникают новые комбинации => предполагаем, что гены находятся в разных хромосомах.

 $H_0 = 3:6:3:1:2:1$

2) Расчитаем значение χ^2 .

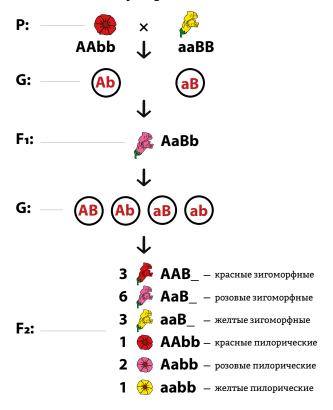
Фенотип	н	0	$\frac{(H-O)^2}{O}$	Χ²
	39	43,875	0,542	
	94	87,750	0,445	
	45	43,875	0,029	1 250
	15	14,625	0,009	1,259
*	28	29,250	0,053	
*	13	14,625	0,181	

Н – наблюдаемое количество особей

0 - ожидаемое количество особей

Число степеней свободы = 5

$$\chi^2_{KP} = 11,007$$


Число степеней свободы	1	2	3	4	5	6	7
Х ² кр	3,841	5,991	7,815	9,488	11,007	12,592	14,067

Так как $\chi^2 < \chi^2_{KP}$, то гипотеза **H**₀ не отвергается.

Вывод №3

Данные гены наследуются независимо.

5. Запишем схему скрещивания

	A B	A	a B	a b
A B	AABB	AABb	AaBB	AaBb
A	AABb	AAbb	AaBb	 Aabb
a B	AaBB	AaBb	🔑 aaBB	🔑 aaBb
a b	AaBb	Aabb	aaBb	☀ aabb

Выводы

Окраска наследуется по типу неполного доминирования:

АА — красная,

Аа — розовая,

аа — желтая.

Форма наследуется по типу полного доминирования:

 \mathbf{B}_{-} зигоморфная,

bb — пилорическая.

Данные гены наследуются независимо, т.е. находятся в разных хромосомах.