ОПРЕДЕЛЕНИЕ КОНЕЧНОЙ ПОДГРУППЫ

Конечная подгруппа

— это конечный набор $G = \{g_1, g_2, ..., g_k\}$, в котором композиция любых элементов из G также является элементом G.

НА МАТЕМАТИЧЕСКОМ ЯЗЫКЕ:

$$\forall g_i, g_i \in G \Rightarrow g_i \circ g_i = g_k \in G.$$

 \forall — любой

∈ - принадлежит

 \Rightarrow — следовательно

ЗАДАЧА:

охарактеризовать все конечные подгруппы

- движений прямой
- движений окружности

КОНЕЧНЫЕ ПОДГРУППЫ ДВИЖЕНИЙ ПРЯМОЙ. ЧАСТЬ 1

Лемма 0

Конечная подгруппа *G* не содержит нетривиальных переносов.

$$\forall T_{\mathbf{v}} \neq \mathbf{Id} \Rightarrow T_{\mathbf{v}} \notin \mathbf{G}$$

∉ — не принадлежит

ДОКАЗАТЕЛЬСТВО

Предположим, что G содержит $T_{v} \neq Id$. Тогда $T_{v} \circ T_{v} = T_{2v} \in G$ по определению подгруппы. Аналогично:

 $T_{2v} \circ T_v = T_{3v} \in G, T_{4v} \in G, T_{5v} \in G$ и так далее до бесконечности, что противоречит тому, что в G конечное количество элементов. Значит, предположение, что G содержит $T_v \neq Id$, неверно, **лемма доказана**.

Лемма 1

Конечная подгруппа *G* не содержит двух различных отражений.

$$S_A, S_B \in G \Rightarrow S_A = S_B$$

ДОКАЗАТЕЛЬСТВО

Предположим, что S_A , $S_B \in G$ и $S_A \neq S_B$. Тогда $S_A \circ S_B \in G$ по определению подгруппы.

Согласно таблице композиций движений прямой (Урок 9), $S_A \circ S_B = T_{2BA}$. Но T_{2BA} не может принадлежать G (по Лемме 0). Значит, предположение, что G содержит два различных отражения, неверно, **лемма доказана.**

КОНЕЧНЫЕ ПОДГРУППЫ ДВИЖЕНИЙ ПРЯМОЙ. ЧАСТЬ 2

Лемма 2

Непустая конечная подгруппа *G* всегда содержит Id.

$$G \neq \emptyset \Rightarrow Id \in G$$

 \varnothing — пустое множество

ДОКАЗАТЕЛЬСТВО

Рассмотрим движение $g \in G$ и будем брать его композиционные степени:

 $g \circ g \in G$, $g \circ g \circ g \in G$ и так далее. Так как G конечна, не все значения композиций будут различными: для каких-то чисел I и m (допустим, m > I, m = I + r) будет выполнено:

$$g \circ g \circ \dots \circ g = g \circ g \circ \dots \circ g$$

$$| pas \qquad m = l + r pas$$

Согласно свойству отображений, мы можем расставлять скобки как угодно. Расставим так:

$$g \circ g \circ ... \circ g = (g \circ ... \circ g) \circ (g \circ ... \circ g)$$

I pas

I pas

r pas

Обозначим:

$$g \circ g \circ ... \circ g = h_1$$
 $g \circ g \circ ... \circ g = h_2$

И подставим: $h_1 = h_1 \circ h_2$. Домножим обе части равенства на h_1^{-1} (обратное к h_1 точно существует, см Урок 6):

$$h_1^{-1}\circ h_1=h_1^{-1}\circ h_1\circ h_2.$$
 Так как $h_1^{-1}\circ h_1=$ Id, а Id $\circ h_2=h_2$, получим Id $=h_2=g\circ g\circ ...\circ g\in G$, лемма доказана.

Лемма 3

Конечная подгруппа *G* содержит не более двух элементов.

ДОКАЗАТЕЛЬСТВО

По Лемме 2, если $G \neq \emptyset$, то $Id \in G$. Лемма 3 утверждает, что кроме $Id \in G$ может быть еще только одно движение. По Лемме 0, G не содержит ни одного нетривиального переноса. По Лемме 1, G не содержит двух различных отражений. Согласно классификации движений прямой (Урок 6), других видов движений не существует. Следовательно, вторым элементом может быть только одно отражение, лемма доказана.

КЛАССИФИКАЦИЯ КОНЕЧНЫХ ПОДГРУПП ДВИЖЕНИЙ ПРЯМОЙ

Теорема

Непустая конечная подгруппа С содержит

- либо только **Id**: **G** = {**Id**},
- либо ld и отражение относительно некоторой точки: $G = \{ ld, S_a \}$.

ДОКАЗАТЕЛЬСТВО

Согласно доказанным леммам, других движений в G быть не может. Осталось доказать, что они действительно образуют конечную подгруппу.

По определению, композиция любых элементов конечной подгруппы также должна принадлежать этой подгруппе.

Для
$$G=\{\mathrm{Id}\}$$
 это выполнено: $\mathrm{Id}\circ\mathrm{Id}=\mathrm{Id}\in G$. Для $G=\{\mathrm{Id},\mathsf{S}_{\scriptscriptstyle\Delta}\}$

Составим таблицу композиций:

	ld	S _A
ld	$Id \circ Id = Id \in G$	$Id \circ S_{A} = S_{A} \in G$
S _A	$\mathbf{S}_{\mathbf{A}} \circ \mathbf{Id} = \mathbf{S}_{\mathbf{A}} \in \mathbf{G}$	$\mathbf{S}_{A} \circ \mathbf{S}_{A} = \mathbf{Id} \in \mathbf{G}$

Видим, что композиции элементов из G содержатся в G, значит, G является конечной подгруппой. **Теорема доказана.**

Утв.1

Непустая конечная подгруппа *G* всегда содержит Id.

 $G \neq \emptyset \Rightarrow Id \in G$

ДОКАЗАТЕЛЬСТВО

Необходимо провести те же рассуждения, что и для доказательства принадлежности Id подгруппе движений прямой.

Оставим эту задачу в качестве упражнения.

Тривиальный случай: $G = \{ Id \}$.

Рассмотрим три нетривиальных случая, когда кроме Id подгруппа G содержит:

- только отражения (поворотов нет),
- только повороты (отражений нет),
- и повороты, и отражения.

Прежде чем анализировать каждый из этих случаев, докажем вспомогательное утверждение (Утв.2).

Утв.2

Для любого движения из G обратное к нему тоже содержится в G.

$$\forall g \in G \Rightarrow g^{-1} \in G$$

ДОКАЗАТЕЛЬСТВО

Расставив скобки таким образом: $g \circ (g \circ \circ g) = Id$, можем сделать вывод, что $(g \circ \circ g) = g^{-1}$, то есть g^{-1} является композиционной степенью g, а значит, содержится в G, **утверждение доказано**.

Кроме Id конечная подгруппа G содержит:

1. Только отражения (поворотов нет)

Предположим, что G содержит два различных отражения.

Согласно таблице композиций движений окружности (см Урок 9), композиция двух отражений является нетривиальным поворотом.

Но в рассматриваемом случае предположено, что G не содержит поворотов. Значит, в G может быть только одно отражение.

Аналогично случаю движений прямой, мы заключаем, что Id в паре с любым отражением образует конечную подгруппу из двух элементов.

2. Только повороты (отражений нет)

Рассмотрим подгруппу из k+1 элемента: $G = \{ Id, R_1, R_2, ..., R_k \}$.

Обозначим углы, на которые происходят повороты против часовой стрелки, за $\varphi_1, \; \varphi_2, \ldots, \; \varphi_k,$ причем $0^\circ < \varphi_i < 360^\circ$ для всех $i=1,\,2,\,\ldots,\,k.$

Id можно представить как поворот на угол φ_0 , равный 0° или 360°.

Выберем из $\varphi_{\mathbf{1}},\,\varphi_{\mathbf{2}},\,\dots\,,\,\varphi_{\mathbf{k}}$ минимальный угол и обозначим его за $\psi\!\in\!\mathbf{G}.$

Лемма 1

Все углы $\varphi_{\rm 0}=$ 360°, $\varphi_{\rm 1},\varphi_{\rm 2},\ldots,\varphi_{\rm k}$ кратны $\psi.$

$$\forall \, \mathbf{R}_{\varphi_{_{_{\boldsymbol{i}}}}} \in \mathbf{G} \, \, \varphi_{_{_{\boldsymbol{i}}}} \, \vdots \, \psi$$
 $\vdots \, -$ делится

Лемма 2

В G содержатся все повороты на углы, кратные ψ .

$$G = \{R_{\psi}, R_{2\psi}, \dots, R_{k\psi}, R_{(k+1)\psi} = Id\}$$

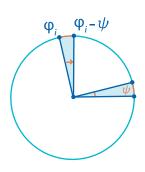
Лемма 1

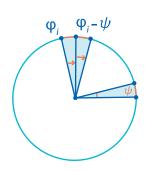
Все углы $\varphi_{\rm 0}=$ 360°, $\varphi_{\rm 1},\varphi_{\rm 2},\ldots,\varphi_{\rm k}$ кратны $\psi.$

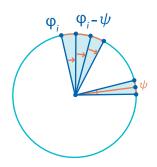
$$\forall \mathbf{R}_{\varphi_i} \in \mathbf{G} \ \varphi_i \ \vdots \ \psi$$

По Утв.2, $R_{.\psi} \in G$ как обратный к R_{ψ} . Рассмотрим композицию $R_{\varphi i} \circ R_{.\psi} = R_{\varphi i \cdot \psi} \in G$. Взяв композицию m раз, мы получим поворот $R_{\varphi i \cdot m \psi} \in G$, максимально приближенный к R_{ψ} . Если $R_{\varphi i \cdot m \psi}$ не совпадет с R_{ψ} , значит, на этом или на следующем шаге мы получим поворот на угол, меньший ψ .

Это противоречит предположению, что ψ — минимальный из всех углов поворота в G. Значит, φ_i : ψ при $i=1,\,2,\,...\,,\,k$. Более того, при $\varphi_i=\varphi_0=360^\circ$ можно провести все те же рассуждения и получить, что 360° : ψ . Лемма доказана.







Лемма 2

В G содержатся все повороты на углы, кратные ψ .

$$G = \{R_{\psi}, R_{2\psi}, \dots, R_{k\psi}, R_{(k+1)\psi} = Id\}$$

ДОКАЗАТЕЛЬСТВО

 $R_{\psi} \in G$, значит, все композиционные степени ($R_{2\psi}$, $R_{3\psi}$,...) содержатся в G. Согласно Лемме 1, других поворотов в G нет, поэтому остается убедиться, что этот набор образует подгруппу.

Проверим для произвольных m и l: $R_{m\psi} \circ R_{l\psi} = R_{(m+l)\psi}$. Если $m+l \leqslant k+1$, то очевидно, что $R_{(m+l)\psi}$ совпадает с одним из поворотов, содержащихся в G.

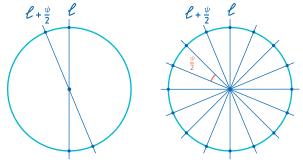
Если m+l>k+1, то $R_{(m+l)\psi}=R_{(m+l\cdot(k+1))\psi}=R_{(m+l\cdot(k+1))\psi}$, так как $R_{(k+1)\psi}$ завершит полный круг и останется совершить $(m+l\cdot(k+1))$ поворотов на угол ψ , а это снова совпадает с одним из поворотов, содержащихся в G. Значения m и I выбраны произвольно, значит, композиция любых элементов G также является элементом G, **лемма доказана**.

вывод

Если в G есть только повороты и нет отражений, то G состоит из конечного множества поворотов на углы, кратные некоторому минимальному углу ψ .

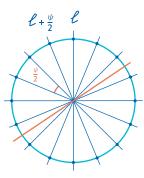
3. И повороты, и отражения

Рассмотрим конечную подгруппу G', являющуюся подмножеством G и состоящую только из поворотов (как в случае 2.): $G' = \{R_{u}, R_{2u}, ..., Id\}$. Рассмотрим также некоторое отражение $S_i \in G$. По определению конечной подгруппы, G должна содержать $R_{i,i} \circ S_i = S_{i+1,i/2}$ (см таблицу композиций, Урок 9). Следующие композиции с R_{ν} (то есть $R_{2,b} \circ S_{l} = R_{b} \circ R_{b} \circ S_{l} = R_{b} \circ S_{l+b/2}$, затем R₂" ○ S, и так далее) будут добавлять отражения относительно прямых, расположенных друг вслед за другом через углы $\psi/2$. Композиция с последним поворотом из G' приведет в точности к исходной прямой I, так как 360° : ψ .



Заметим, что других отражений G не содержит: любая прямая, задающая другое отражение, находилась бы между двумя соседними прямыми, идущими через угол $\psi/2$.

Легко убедиться, что композиция двух отражений относительно новой прямой и соседней с ней даст поворот на угол, строго меньший ψ . Этот поворот должен был бы принадлежать G, но это противоречит тому, что G содержит только повороты, кратные углу ψ .



Получаем:

 $G = \{R_{\psi}, R_{2\psi}, ..., R_{n\psi} = Id, S_{p}, S_{p+\psi/2}, ..., S_{p+(n-1)\psi/2}\}$ Убедитесь самостоятельно, что композиция любых элементов G также является элементом G.

ЗАМЕЧАНИЕ:

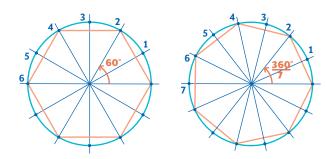
Исходная прямая *I* может быть любой, то есть для данной системы поворотов существует бесчисленное множество списков отражений, с которыми она образует конечную подгруппу движений окружности.

ДОПОЛНЕНИЕ:

В данном случае G можно рассматривать как совокупность всех движений окружности, сохраняющих правильный многоугольник.

ПРИМЕР 1

Отражения относительно 6 прямых вместе с поворотами на углы, кратные 60°, сохраняют правильный шестиугольник. Четное количество вершин: каждая прямая проходит либо через вершины многоугольника, либо через середины сторон.



ПРИМЕР 2

Отражения относительно 7 прямых вместе с поворотами на углы, кратные 360°/7, сохраняют правильный семиугольник. Нечетное количество вершин: каждая прямая проходит как через вершину, так и через середину противоположной стороны.